Dopamine D1, D2, D3 Receptors, Vesicular Monoamine Transporter Type-2 (VMAT2) and Dopamine Transporter (DAT) Densities in Aged Human Brain
نویسندگان
چکیده
The dopamine D(1), D(2), D(3) receptors, vesicular monoamine transporter type-2 (VMAT2), and dopamine transporter (DAT) densities were measured in 11 aged human brains (aged 77-107.8, mean: 91 years) by quantitative autoradiography. The density of D(1) receptors, VMAT2, and DAT was measured using [(3)H]SCH23390, [(3)H]dihydrotetrabenazine, and [(3)H]WIN35428, respectively. The density of D(2) and D(3) receptors was calculated using the D(3)-preferring radioligand, [(3)H]WC-10 and the D(2)-preferring radioligand [(3)H]raclopride using a mathematical model developed previously by our group. Dopamine D(1), D(2), and D(3) receptors are extensively distributed throughout striatum; the highest density of D(3) receptors occurred in the nucleus accumbens (NAc). The density of the DAT is 10-20-fold lower than that of VMAT2 in striatal regions. Dopamine D(3) receptor density exceeded D(2) receptor densities in extrastriatal regions, and thalamus contained a high level of D(3) receptors with negligible D(2) receptors. The density of dopamine D(1) linearly correlated with D(3) receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D(3) receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D(1) and D(2) receptors and DAT compared with the aged rhesus monkey brain. The differential density of D(3) and D(2) receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D(2) or D(3) receptors.
منابع مشابه
Vesicular neurotransmitter transporters in Huntington's disease: initial observations and comparison with traditional synaptic markers.
Markers of identified neuronal populations have previously suggested selective degeneration of projection neurons in Huntington's disease (HD) striatum. Interpretations are, however, limited by effects of compensatory regulation and atrophy. Studies of the vesicular monoamine transporter type-2 (VMAT2) and of the vesicular acetylcholine transporter (VAChT) in experimental animals indicate that ...
متن کاملRapid and differential losses of in vivo dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2) radioligand binding in MPTP-treated mice.
The dose- and time-dependent changes of in vivo radioligand binding to the neuronal membrane dopamine transporter (DAT) and vesicular monoamine transporter type 2 (VMAT2) were examined in mouse brain after MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) administrations. Regional brain distribution studies were done in male C57BL/6 mice using simultaneous injections of d-threo-[(3)H]methylph...
متن کاملThe vesicular monoamine transporter, in contrast to the dopamine transporter, is not altered by chronic cocaine self-administration in the rat.
Although much evidence suggests that the brain dopamine transporter (DAT) is susceptible to dopaminergic regulation, only limited information is available for the vesicular monoamine transporter (VMAT2). In the present investigation, we used a chronic, unlimited-access, cocaine self-administration paradigm to determine whether brain levels of VMAT2, as estimated using [3H]dihydrotetrabenazine (...
متن کاملRunning Head: EFFECTS OF GENE KNOCKOUT ON ETHANOL CONSUMPTION 1 The Effects of Gene Knockout of the Vesicular Monoamine Transporter 2 (VMAT2; SLC18A2) and the Dopamine Transporter (DAT; SLC3A6) on Ethanol Consumption and Escalation in Mice. Undergraduate Psychology Honor’s Thesis
متن کامل
Methamphetamine-induced dopamine transporter complex formation and dopaminergic deficits: the role of D2 receptor activation.
Methamphetamine (METH) abuse is a serious public health issue. Of particular concern are findings that repeated high-dose administrations of METH cause persistent dopaminergic deficits in rodents, nonhuman primates, and humans. Previous studies have also revealed that METH treatment causes alterations in the dopamine transporter (DAT), including the formation of higher molecular mass DAT-associ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012